
Confidential Customized for Lorem Ipsum LLC Version 1.0

Emmanuel Rassou 2023

Confidential Customized for Lorem Ipsum LLC Version 1.0

Before we embark on a new adventure…

Confidential Customized for Lorem Ipsum LLC Version 1.0

What is the lowest common ancestor?

Given two nodes on a TREE (rooted at node 0)
,their LCA is the node that is a parent (
ancestor) of each node AND has the
maximal depth.

It is the ‘best’ meeting point between the two
nodes, if you can only travel up the tree.

0

1

2

3

4

What is the LCA of node 4 and 6?

Solve queries: find LCA of nodes a & b
quickly

Which algorithm to
choose?

Binary
Jumping

 Euler
 Tour

Naive
solution

NAIVE SOLUTION

O(N) time per query

1. Traverse up the tree
from one of the nodes

2. Mark all visited
nodes as visited

 3. Traverse up the tree
from the other node

 4. Return the first
visited node that is
marked as visited

Which algorithm to
choose?

Binary
Jumping

 Euler
 Tour

Binary Jumping
Preprocess: O(NlogN)
Query: O(logN)

Confidential Customized for Lorem Ipsum LLC Version 1.0

Algorithm using Sparse table and Binary jumping

0

1

2

3

4

1) Preprocessing using sparse table:
Calculate for each node the 2k th parent

for(I = 1; I <= N; I++)
 for(J = 1; (1 << J) < N; J++)
 if(sparse_table[I][J-1] !=-1)
 sparse_table[I][J] =
sparse_table[sparse_table[I][J-1]][J-1];

NOTE* Set sparse_table[i][j] = -1 for out of bounds jumps.

Example-if node u has to climb 37 edges to reach the LCA:
37 = 32 + 4 + 1 = 100101

2

Then we make a jump of 32. Set this to node u
Make a jump of 4. Set this to node u.
Make a jump of 1. Set this to node u.

1+) Run a simple DFS to get depth of each node

Confidential Customized for Lorem Ipsum LLC Version 1.0

Algorithm using Sparse table and Binary jumping

0

1

2

3

4

2) if depth a ≠ depth b:
Move the deeper one up until depth a = depth b
Use binary jump for logN time

3) Implementation detail:
After 2) if a == b then we have found our LCA
find a number log such that 2^(log+1) > depth[a]

4) for(I = log; I>=0; I--)
 if(sparse_table[a][I] !=-1 && sparse_table[a][I]
!= sparse_table[b][I])
 a = sparse_table[a][I];
 b = sparse_table[b][I];
Intuitively :
➢ Start with the biggest jumps 2I and make the jumps

smaller and smaller
➢ If we overshoot our LCA, just decrease our jump to 2I - 1

➢ Otherwise the 2I th ancestor of a and b are NOT equal
So we set a and b to be their respective ancestors
Also decrease our jump to size 2I - 1

Our jump will eventually reach size 20 = 1 in which case we find
our LCA

 Euler
 Tour

Finally … We have
found peace

Euler tour
technique
Preprocess: O(NlogN)
Query: O(logN)

Euler
tour vi

sual

Confidential Customized for Lorem Ipsum LLC Version 1.0

Algorithm using Euler tour array and RMQ

0

1

2

3

4

1) Run DFS on the tree :
Add a node to the array euler whenever the node is
called (time in) and whenever the dfs backtracks
from one of its children.
Pseudocode:
Dfs (current_node, parent_node):

euler.push(current_node)
For each child of current_node:

Dfs(child , current_node)
euler.push(current_node)

To note : each node is added to the euler c + 1
times, where c is the number of children of the
node. Therefore, euler.size() = 2n - 1

0 1 4 10 4 1 5 1 2 3 7 3 6 3 2 1 0 8 0 9 0

Confidential Customized for Lorem Ipsum LLC Version 1.0

Algorithm using Euler tour array and RMQ

0

1

2

3

4

We also want to keep track of at least one
occurrence for each node in the euler array.
For simplicity, we record the first time for each
node in the tin array

Pseudocode:
timer =0
Dfs (current_node, parent_node):

euler.push(current_node)
tin[current_node] = timer
timer ++
For each child of current_node:

Dfs(child , current_node)
euler.push(current_node)
timer ++

0 1 4 10 4 1 5 1 2 3 7 3 6 3 2 1 0 8 0 9 0

Confidential Customized for Lorem Ipsum LLC Version 1.0

Algorithm using Euler tour array and RMQ

0

1

2

3

4

2) Find LCA of node a and b:
★ Pick any node a in the euler array (call its index i_a)
★ Pick any node b in the euler array (call its index i_b)
★ In the range [i_a, i_b] the LCA is the node with

minimal depth (closest to the root)

Concrete example:
Find LCA node 4 and node 6
We can use our tin array:
tin[4] = 2, tin[6] = 12
From all the nodes between indices 2 and 12 the
one closest to the root is node 1.

(Implementation detail : instead of looking at depths of
nodes we can alternatively check time in of each node
If depth[a] < depth[b] then tin[a] < tin[b]
So makes no difference!)

0 1 4 10 4 1 5 1 2 3 7 3 6 3 2 1 0 8 0 9 00 1 4 10 4 1 5 1 2 3 7 3 6 3 2 1 0 8 0 9 0

Confidential Customized for Lorem Ipsum LLC Version 1.0

But how can we find the minimal node in
this range efficiently???

RMQ = Range Minimum Query

Confidential Customized for Lorem Ipsum LLC Version 1.0

Here we go again

Confidential Customized for Lorem Ipsum LLC Version 1.0

0 1 4 10 4 1 5 1 2 3 7 3 6 3 2 1 0 8 0 9 0

0 1 2 3 2 1 6 1 8 9 10 9 12 9 8 1 0 17 0 19 0

3.) Build segment tree using array of tin values (or
depth values)

Then call
query(tin[a], tin[b])

Where query is segment tree query function.

It will return tin[LCA], which you can use to find
LCA.

Each query takes O(logN) time.

EULER

Time in

Confidential Customized for Lorem Ipsum LLC Version 1.0

One application of LCA

Distance between two nodes in a tree

If c = LCA(a, b)

AB = dist(a) + dist(b) - dist(c)
Where dist(node) is distance from node to
root

Distance between two nodes in a tree

If c = LCA(a, b)

ab = dist(a) + dist(b) - 2*dist(c)
Where dist(node) is distance from node to root

Confidential Customized for Lorem Ipsum LLC Version 1.0

Thank you

References & Resources

https://codeforces.com/blog/entry/77451#:~:text=Definition%3A,edge%20or%20the%20sum%2C%20

etc. (Binary Jumping)

https://saco-evaluator.org.za/presentations/2019%20Camp%202/Lowest%20Common%20Ancestor%

20(Andi%20Qu).pdf (Andi’s presentation)

https://saco-evaluator.org.za/presentations/2018%20Camp%202/Range%20Queries%20and%20Fenwi

ck%20Trees%20(Yaseen%20Mowzer).pdf (Segment Trees)

https://codeforces.com/blog/entry/77451#:~:text=Definition%3A,edge%20or%20the%20sum%2C%20etc
https://codeforces.com/blog/entry/77451#:~:text=Definition%3A,edge%20or%20the%20sum%2C%20etc
https://saco-evaluator.org.za/presentations/2019%20Camp%202/Lowest%20Common%20Ancestor%20(Andi%20Qu).pdf
https://saco-evaluator.org.za/presentations/2019%20Camp%202/Lowest%20Common%20Ancestor%20(Andi%20Qu).pdf
https://saco-evaluator.org.za/presentations/2018%20Camp%202/Range%20Queries%20and%20Fenwick%20Trees%20(Yaseen%20Mowzer).pdf
https://saco-evaluator.org.za/presentations/2018%20Camp%202/Range%20Queries%20and%20Fenwick%20Trees%20(Yaseen%20Mowzer).pdf

