Lowest Common Ancestor

Emmanuel Rassou

Befone we embark on a new adventure...

Given two nodes on a TREE (rooted at node 0) ,their LCA is the node that is a parent (ancestor) of each node AND has the maximal depth.

It is the 'best' meeting point between the two nodes, if you can only travel up the tree.

What is the LCA of node 4 and 6 ?

Solve queries: find LCA of nodes $a \& b$ quickly

NAIVE SOLUTION

$O(N)$ time per query

Algorithm using Sparse table and Binary jumping

0

1) Preprocessing using sparse table: Calculate for each node the 2^{k} th parent
```
for(I = 1; I <= N; I++)
    for(J = 1; (1 << J) < N; J++)
    if(sparse table[I][J-1] !=-1)
        sparse_table[I][J] =
sparse_table[sparse_table[I][J-1]][J-1];
```

NOTE* Set sparse_table[i][j] = -1 for out of bounds jumps.
Example-if node u has to climb 37 edges to reach the LCA: $37=32+4+1=100101_{2}$

Then we make a jump of 32 . Set this to node u Make a jump of 4. Set this to node u.
Make a jump of 1 . Set this to node u.
1^{+}) Run a simple DFS to get depth of each node

Algorithm using Sparse table and Binary jumping

0
2) if depth $a \neq$ depth b :

Move the deeper one up until depth $a=$ depth b
Use binary jump for $\log N$ time
3) Implementation detail:

After 2) if $a==b$ then we have found our LCA
find a number log such that $2^{\wedge}(\log +1)>$ depth $[a]$
4) $\operatorname{for}(\mathrm{I}=\log ; \quad \mathrm{I}>=0 ; \quad \mathrm{I}--)$
if(sparse_table[a][I] !=-1 \&\& sparse_table[a][I]
! = sparse_table[b][I])
a = sparse_table[a][I];
b = sparse_table[b][I];
Intuitively:
$>$ Start with the biggest jumps 2^{1} and make the jumps smaller and smaller
If we overshoot our LCA, just decrease our jump to 2^{1-1}
$>\quad$ Otherwise the 2^{1} th ancestor of a and b are NOT equal
So we set a and b to be their respective ancestors
Also decrease our jump to size 2^{1-1}
Our jump will eventually reach size $2^{0}=1$ in which case we find our LCA

Finally Wehave

 found peacePreprocess: O(NlogN) Query: O(logN)

$-$

Algorithm using Euler tour array and RMQ

Algorithm using Euler tour array and RMQ

Algorithm using Euler tour array and RMQ

2) Find LCA of node a and b :
$\star \quad$ Pick any node a in the euler array (call its index i_a)
$\star \quad$ Pick any node b in the euler array (call its index i_b)
$\star \quad$ In the range [i_a, i_b] the LCA is the node with minimal depth (closest to the root)

Concrete example:

Find LCA node 4 and node 6
We can use our tin array:
$\operatorname{tin}[4]=2, \operatorname{tin}[6]=12$
From all the nodes between indices 2 and 12 the one closest to the root is node 1.
(Implementation detail : instead of looking at depths of nodes we can alternatively check time in of each node If depth[a] < depth[b] then $\operatorname{tin}[a]$ < $\operatorname{tin}[b]$ So makes no difference!)

But how can we find the minimal node in this rangereficiently?

RMQ = Range Minimum Query

© Re application of LCA

Distance between two nodes in a tree

If $c=\operatorname{LCA}(a, b)$
$a b=\operatorname{dist}(a)+\operatorname{dist}(b)-2^{*} d i s t(c)$
Where dist(node) is distance from node to root

References 8 Resources

 etc. (Binary 5 ma,
httos.//sacoeevaluator.org za/presentations/2019\%20Camp\%202/Lowest\%20Common\%20Ancestor\% 20 (Andi\%200u)podf (Andi's presentation)
httos //sacozevaluatoriorg za/presentations/2018\%20.Gamp\%202/Range\%200ueries\%20and\%20Fenwi

